915 research outputs found

    Optical properties of the pseudogap state in underdoped cuprates

    Full text link
    Recent optical measurements of deeply underdoped cuprates have revealed that a coherent Drude response persists well below the end of the superconducting dome. In addition, no large increase in optical effective mass has been observed, even at dopings as low as 1%. We show that this behavior is consistent with the resonating valence bond spin-liquid model proposed by Yang, Rice, and Zhang. In this model, the overall reduction in optical conductivity in the approach to the Mott insulating state is caused not by an increase in effective mass, but by a Gutzwiller factor, which describes decreased coherence due to correlations, and by a shrinking of the Fermi surface, which decreases the number of available charge carriers. We also show that in this model, the pseudogap does not modify the low-temperature, low-frequency behavior, though the magnitude of the conductivity is greatly reduced by the Gutzwiller factor. Similarly, the profile of the temperature dependence of the microwave conductivity is largely unchanged in shape, but the Gutzwiller factor is essential in understanding the observed difference in magnitude between ortho-I and -II YBa2_2Cu3_3Oy_y.Comment: 9 pages, 6 figures, submitted to Eur. Phys. J.

    Crystal size induced reduction in thermal hysteresis of Ni-Ti-Nb shape memory thin films

    Get PDF
    Ni41.7Ti38.8Nb19.5 shape memory alloy films were sputter-deposited onto silicon substrates and annealed at various temperatures. A narrow thermal hysteresis was obtained in the Ni-Ti-Nb films with a grain size of less than 50 nm. The small grain size, or large amount of grain boundaries, facilitates the phase transformation, thus reduces the hysteresis. The corresponding less transformation friction and heat transfer during the shear process, as well as reduced spontaneous lattice distortion, are also responsible for this reduction of the thermal hysteresis

    Spin configuration of top quark pair production with large extra dimensions at photon-photon colliders

    Get PDF
    Top quark pair production at photon-photon colliders is studied in low scale quantum gravity scenario. From the dependence of the cross sections on the spin configuration of the top quark and anti-quark, we introduce a new observable, top spin asymmetry. It is shown that there exists a special top spin basis where with the polarized parent electron beams the top spin asymmetry vanishes in the standard model but retains substantial values with the large extra dimension effects. We also present lower bounds of the quantum gravity scale MSM_S from total cross sections with various combinations of the laser, electron beam, and top quark pair polarizations. The measurements of the top spin state (ttˉ)(t_\uparrow\bar{t}_\downarrow) with unpolarized initial beams are shown to be most effective, enhancing by about 5% the MSM_S bounds with respect to totally unpolarized case.Comment: 18 pages, 4 figures, ReVTe

    Adiponectin Prevents Diabetic Premature Senescence of Endothelial Progenitor Cells and Promotes Endothelial Repair by Suppressing the p38 MAP Kinase/p16INK4A Signaling Pathway

    Get PDF
    OBJECTIVE - A reduced number of circulating endothelial progenitor cells (EPCs) are casually associated with the cardiovascular complication of diabetes. Adiponectin exerts multiple protective effects against cardiovascular disease, independent of its insulin-sensitizing activity. The objective of this study was to investigate whether adiponectin plays a role in modulating the bioavailability of circulating EPCs and endothelial repair. RESEARCH DESIGN AND METHODS - Adiponectin knockout mice were crossed with db+/- mice to produce db/db diabetic mice without adiponectin. Circulating number of EPCs were analyzed by flow cytometry. Reendothelialization was evaluated by staining with Evans blue after wire-induced carotid injury. RESULTS - In adiponectin knockout mice, the number of circulating EPCs decreased in an age-dependent manner compared with the wild-type controls, and this difference was reversed by the chronic infusion of recombinant adiponectin. In db/db diabetic mice, the lack of adiponectin aggravated the hyperglycemia-induced decrease in circulating EPCs and also diminished the stimulatory effects of the PPARγ agonist rosiglitazone on EPC production and reendothelialization. In EPCs isolated from both human peripheral blood and mouse bone marrow, treatment with adiponectin prevented high glucose-induced premature senescence. At the molecular level, adiponectin decreased high glucose-induced accumulation of intracellular reactive oxygen species and consequently suppressed activation of p38 MAP kinase (MAPK) and expression of the senescence marker p16INK4A. CONCLUSIONS - Adiponectin prevents EPC senescence by inhibiting the ROS/p38 MAPK/p16 INK4A signaling cascade. The protective effects of adiponectin against diabetes vascular complications are attributed in part to its ability to counteract hyperglycemia-mediated decrease in the number of circulating EPCs. © 2010 by the American Diabetes Association.published_or_final_versio

    Two Cyclin-Dependent Kinase Pathways Are Essential for Polarized Trafficking of Presynaptic Components

    Get PDF
    SummaryPolarized trafficking of synaptic proteins to axons and dendrites is crucial to neuronal function. Through forward genetic analysis in C. elegans, we identified a cyclin (CYY-1) and a cyclin-dependent Pctaire kinase (PCT-1) necessary for targeting presynaptic components to the axon. Another cyclin-dependent kinase, CDK-5, and its activator p35, act in parallel to and partially redundantly with the CYY-1/PCT-1 pathway. Synaptic vesicles and active zone proteins mostly mislocalize to dendrites in animals defective for both PCT-1 and CDK-5 pathways. Unlike the kinesin-3 motor, unc-104/Kif1a mutant, cyy-1 cdk-5 double mutants have no reduction in anterogradely moving synaptic vesicle precursors (SVPs) as observed by dynamic imaging. Instead, the number of retrogradely moving SVPs is dramatically increased. Furthermore, this mislocalization defect is suppressed by disrupting the retrograde motor, the cytoplasmic dynein complex. Thus, PCT-1 and CDK-5 pathways direct polarized trafficking of presynaptic components by inhibiting dynein-mediated retrograde transport and setting the balance between anterograde and retrograde motors

    The Use of Modified Mindfulness-Based Stress Reduction and Mindfulness-Based Cognitive Therapy Program for Family Caregivers of People Living with Dementia: A Feasibility Study

    Get PDF
    Purpose The aim of this study was to investigate the feasibility and preliminary efficacy of a modified mindfulness-based stress reduction (MBSR) program and mindfulness-based cognitive therapy (MBCT) program for reducing the stress, depressive symptoms, and subjective burden of family caregivers of people with dementia (PWD). Methods A prospective, parallel-group, randomized controlled trial design was adopted. Fifty-seven participants were recruited from the community and randomized into either the modified MBSR group (n = 27) or modified MBCT group (n = 26), receiving seven face-to-face intervention sessions for more than 16 weeks. Various psychological outcomes were measured at baseline (T0), immediately after intervention (T1), and at the 3-month follow-up (T2). Results Both interventions were found to be feasible in view of the high attendance (more than 70.0%) and low attrition (3.8%) rates. The mixed analysis of variance (ANOVA) results showed positive within-group effects on perceived stress (p = .030, Cohen's d = 0.54), depressive symptoms (p = .002, Cohen's d = 0.77), and subjective caregiver burden (p < .001, Cohen's d = 1.12) in both interventions across the time points, whereas the modified MBCT had a larger effect on stress reduction, compared with the modified MBSR (p = .019). Conclusion Both the modified MBSR and MBCT are acceptable to family caregivers of PWD. Their preliminary effects were improvements in stress, depressive symptoms, and subjective burden. The modified MBCT may be more suitable for caregivers of PWD than the MBSR. A future clinical trial is needed to confirm their effectiveness in improving the psychological well-being of caregivers of PWD

    Optical Bragg, atom Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices

    Full text link
    Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the {\sl valence bond order} parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any Valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. The physical measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap.Comment: REVTEX4-1, 32 pages, 16.eps figures, to Appear in Annals of Physic

    Gravitational Lensing by Black Holes

    Full text link
    We review the theoretical aspects of gravitational lensing by black holes, and discuss the perspectives for realistic observations. We will first treat lensing by spherically symmetric black holes, in which the formation of infinite sequences of higher order images emerges in the clearest way. We will then consider the effects of the spin of the black hole, with the formation of giant higher order caustics and multiple images. Finally, we will consider the perspectives for observations of black hole lensing, from the detection of secondary images of stellar sources and spots on the accretion disk to the interpretation of iron K-lines and direct imaging of the shadow of the black hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). 31 pages, 12 figure
    corecore